Coordinate-invariant incremental Lyapunov functions
نویسندگان
چکیده
The notion of incremental stability was proposed by several researchers as a strong property of dynamical and control systems. In this type of stability, trajectories converge to each other, rather than to an equilibrium point or a particular trajectory. Similarly to stability, Lyapunov functions play an important role in the study of incremental stability. In this paper, we propose coordinate-invariant notions of incremental Lyapunov function and provide characterizations of incremental stability in terms of existence of the proposed Lyapunov functions.
منابع مشابه
Backstepping controller synthesis and characterizations of incremental stability
Incremental stability is a property of dynamical and control systems, requiring the uniform asymptotic stability of every trajectory, rather than that of an equilibrium point or a particular time-varying trajectory. Similarly to stability, Lyapunov functions and contraction metrics play important roles in the study of incremental stability. In this paper, we provide characterizations and descri...
متن کاملCoordinate finite type invariant surfaces in Sol spaces
In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.
متن کاملOutput Consensus Control of Nonlinear Non-minimum Phase Multi-agent Systems Using Output Redefinition Method
This paper concerns the problem of output consensus in nonlinear non-minimum phase systems. The main contribution of the paper is to guarantee achieving consensus in the presence of unstable zero dynamics. To achieve this goal, an output redefinition method is proposed. The new outputs of agents are functions of original outputs and internal states and defined such that the dynamics of agents a...
متن کاملComputation of Lyapunov Exponents in General Relativity
Lyapunov exponents (LEs) are key indicators of chaos in dynamical systems. In general relativity the classical definition of LE meets difficulty because it is not coordinate invariant and spacetime coordinates lose their physical meaning as in Newtonian dynamics. We propose a new definition of relativistic LE and give its algorithm in any coordinate system, which represents the observed changin...
متن کاملRelativistic chaos is coordinate invariant.
The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1107.2681 شماره
صفحات -
تاریخ انتشار 2011